The printf Problem

« Consider the printf function in C:

printf (“Hello World!\n");
printf (“Name: %s”, name);
printf (“ASCII value = %d, Character = %c\n", ch, ch);

- The number and type of arguments printf expects depends on the format str

int printf (const char xformat, ...)

The printf Problem

- The actual type of printf depends on the value of its first argument

« Can we do something similar in Haskell?

printf :: <FormatInfo> —> <Some type depending on FormatInfo>

« The type of the format information must reflect which and how many
arguments are expected

>~ can’t be a regular string

The printf Problem

- Example:
“%s 1s %d years old”
 Our representation: what kind of information do we need to represent on

 value level
. type level?

S (L"™ is "™ (I (L " years old" X))) :: Format '[String, Int]

data Format (fmt :: [x]) where
:: Format '[]

H WDV X

The printf Problem

- Mapping the format type to the type of the printf function:

p1ok) 1 X
y
—> FormatArgsThen fmt ty

type family FormatArgsThen (fmt :: [x]) (ty
type instance FormatArgsThen '[] ty
type instance FormatArgsThen (t ': fmt) ty

Problem: Distinguish values of identical representation

« Mars climate orbiter failure:

» disintegrated, as trajectory was too close to Mars’ atmosphere

- calculated impulse was in pound-seconds instead of newton-seconds
- How can we use the type systems to avoid such problems?

- trade-off between safety and overhead

Phantom types

* A type whose type parameter doesn’t show up on the right hand side:

newtype Length a = Length Double
deriving (Show, Eq, Ord)

- Can be used when side conditions are not reflected in the representations

- e.g., should only be possible to add lengths if given in the same unit, but
both represented as double precision floating point number

Smart Constructors

 Functions which call a constructor, and usually check some side conditions:

newtype IPAddr = IPAddr (Int, Int, Int, Int)

mkIPAddr :: Int -> Int -> Int -> Int -> Maybe IPAddr
mkIPAddr nl n2 n3 n4
| N1 >=06& nl /=10 & ... = Just $ IPAddr (nl, n2, n3, n4)

Back to GADTs & type families

« We have seen examples of what we can do with type families:

type family (+) (n :: Nat) (m :: Nat) :: Nat

type instance 'Z +m=m
type instance ('S n) + m= 'S (n + m)
data Vec a (n :: Nat) where
Nil :: Vec a 'Z
(:::) :: a->Vecan->Vec a ('S n)
(++) :: Vecan->Vecam->Veca (n+m)
Nil ++ XS = XS
(x ::: Xs) ++ ys = x ::: (xXs ++ ys)

Back to GADTs & type families

» The extra power doesn’t come for free:

- type annotations often required

data Vec a (n :: Nat) where
Nil :: Vec a 'Z

(:::) :: a->Vecan->Vec a ('S n) type can’t be

derived automatically

€{3+) :: Vecan ->Vecam—> Vec a (n + pp>
(X 111 XS) ++ ys = X ::: (XS ++ ys)

Back to GADTs & type families

* Define a function which discards all odd elements from a vector

removeOdd (x ::: Xxs)
| odd X removeOdd xs
| otherwise = x ::: removeOdd xs

- What is the type of this function?

type family (+) (n :: Nat) (m :: Nat) :: Nat
type instance 'Z + m =m

type instance ('S n) + m= 'S (n + m)
data Vec a (n :: Nat) where

Nil :: Vec a 'Z

(:::) :: a->Vecan->Vec a ('S n)
(++) :: Vecan->Vecam->Veca (n+m)
Nil ++ XS = XS
(x ::: Xs) ++ ys = x ::: (XS ++ ys)

left hand side (arguments):

Nil :: Vec aQn

?

Xs = Vec am

Vecam ~ Vec (‘Z + m)

right hand side (result):

Xs s Vec am

type family (+) (n :: Nat) (m :: Nat) :: Nat
type instance 'Z + m =m

type instance ('S n) + m = 'S (n + m)
data Vec a (n :: Nat) where

Nil :: Vec a 'Z

(:::) :: a->Vecan->Vec a ('S n)
(++) :: Vecan->Vecam->Veca(n+m)
Nil ++ XS = XS
(x ::: Xs) ++ ys = x ::: (XS ++ ys)

left hand side (arguments):

:: Vec a kK
P n ~'S K
(x:::@)::Veca r?
ys i: Vec am Vec a 'S(k + m) ~ Vec a

right hand side (result):

X 111 (xs ++ ys) :: Vec a 'S(k + m)

(('S k) + m))

