
The printf Problem

• Consider the printf function in C:

 int printf (const char *format, ...)

 printf (“Hello World!\n”);
 printf (“Name: %s”, name);
 printf (“ASCII value = %d, Character = %c\n", ch, ch);

• The number and type of arguments printf expects depends on the format str

The printf Problem

• The actual type of printf depends on the value of its first argument

• Can we do something similar in Haskell?

 printf :: <FormatInfo> -> <Some type depending on FormatInfo>

• The type of the format information must reflect which and how many
arguments are expected

‣ can’t be a regular string

The printf Problem
• Example:

“%s is %d years old”

 data Format (fmt :: [*]) where
 X :: Format '[]
 L :: …
 S :: …
 I :: …

S (L " is " (I (L " years old" X)))

• Our representation: what kind of information do we need to represent on

• value level

• type level?

:: Format '[String, Int]

The printf Problem

• Mapping the format type to the type of the printf function:

 type family FormatArgsThen (fmt :: [*]) (ty :: *) :: *
 type instance FormatArgsThen '[] ty = ty
 type instance FormatArgsThen (t ': fmt) ty = t -> FormatArgsThen fmt ty

Problem: Distinguish values of identical representation

• Mars climate orbiter failure:

• disintegrated, as trajectory was too close to Mars’ atmosphere

• calculated impulse was in pound-seconds instead of newton-seconds

• How can we use the type systems to avoid such problems?

• trade-off between safety and overhead

Phantom types

• A type whose type parameter doesn’t show up on the right hand side:

• Can be used when side conditions are not reflected in the representations

- e.g., should only be possible to add lengths if given in the same unit, but
both represented as double precision floating point number

Smart Constructors

• Functions which call a constructor, and usually check some side conditions:

Back to GADTs & type families

• We have seen examples of what we can do with type families:

Back to GADTs & type families

• The extra power doesn’t come for free:

- type annotations often required

type can’t be
derived automatically

Back to GADTs & type families

• Define a function which discards all odd elements from a vector

• What is the type of this function?

Nil :: Vec a ‘Z

xs :: Vec a m

left hand side (arguments):

right hand side (result):

xs :: Vec a m

n ~ ‘Z

Vec a m ~ Vec (‘Z + m)

?

(x ::: xs)

ys :: Vec a m

left hand side (arguments):

right hand side (result):

x ::: (xs ++ ys) :: Vec a ’S(k + m)

n ~ ’S k
Vec a ’S(k + m) ~ Vec a ((’S k) + m))

?
:: Vec a k

 :: Vec a (’S k)

